If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-34t-4=0
a = 1; b = -34; c = -4;
Δ = b2-4ac
Δ = -342-4·1·(-4)
Δ = 1172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1172}=\sqrt{4*293}=\sqrt{4}*\sqrt{293}=2\sqrt{293}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{293}}{2*1}=\frac{34-2\sqrt{293}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{293}}{2*1}=\frac{34+2\sqrt{293}}{2} $
| 3(j+3)=15 | | 6a-6=4a | | s-14=19 | | -26=3x+9-11x | | 6a–6=4a | | 5=n+n | | 2x–4=-½(-4x+8) | | 2/8(3y+2)=1/4(2y+1/2)+1/2 | | r-4/5=-1/4 | | -4y-4y=3-y-5 | | 5p^2+28p+32=0 | | x(x-3)+7(x-3)=0 | | 13-f=9 | | 2x=2(x2) | | 8a+9=11a | | X+3x-4=7 | | -4x+54=-58-4x | | 5a^2-11a+6=0 | | 90-8.41x=47.95 | | 8=(11-x) | | 3+|-4m+9|=4 | | 3y2+19y–14=0 | | -2x+1=x-8 | | -5q=14-6q | | -2x-6=5x+21 | | 10+7-s=3+s | | -4x+54=-55-4x | | 3n-5n+1=-8-n | | 5=6p+10-5p | | 8w-10=7w-3 | | x+3(x+3)=6x+3 | | -9j=-7-8j |